B.sc(H) part 2
paper 3
Topic:Uniqueness of identity
elements &Inverse element in
a group
UG

Sbject:Mahtematics Dr.Hari kant singh associate professor RRS college mokama

1:cancellation laws in a group Theorem

If $a, b, c \in G$, then

- (i) $ab = ac \Rightarrow b = c$ (left cancellation law)
- (ii) $ba = ca \Rightarrow b = c$ (right cancellating |w|)

Proof: (i) Given that ab = ac. ... (1) Let a be the inverse of a in G. Multiplying (i.e. applying the group operation) both sides of (1) by α^{-1} on the left, we get. $\alpha^{-1}(ab) = \alpha^{-1}(ac)$

$$a^{-1}(ab) = a^{-1}(ac)$$

which by associative law becomes $(\alpha^{-1}a)b = (\alpha^{-1}a)c.$

$$(\alpha^{-1}a)b = (\alpha^{-1}a)c.$$

Since by postulate (G_4) , $a^{-1}a = e$, the identity in G, we have eb = ec.

Now by postulate (G_3) , we have eb = b and ec = c. Therefore we get b = c and the first part of the theorem is a community to be recommended to the contract of the contract proved.

(ii) Given that ba = ca. (II) Let α^{-1} be the inverse of a in G. Multiplying both sides of II by α^{-1} on the right, we get

$$(ba)a^{-1} = (ca)a^{-1}$$

$$\Rightarrow b(aa^{-1}) = c(aa^{-1})$$
 [by postulate G_2]

$$\Rightarrow be = ce$$

be = ce be = ce [by postulate G_4]

$$b = c$$

b = c [by postulate G_3] dividently p. we get the remainder of

and hence in the

Theorem The identity element in a group is unique group mailed a na ei it revoment

Proof: Let G be a group and let e be an identity element. We have to prove that e is unique.

If not, suppose e' be another identity element in a group G. Since e is the identity element of G, therefore.

$$ae = ea = a \qquad (1)$$

Similarly since e' is the identity element of G, therefore

$$ae'=e'a=a \qquad ... (2)$$

for every a e G.

Since the equation (1) is true for every $a \in G$ and since $e' \in G$, therefore putting a = e' in (1) we get

$$e'e = ee' = e'$$
 ... (3

Similarly putting a = e in (2), we get

$$ee' = e'e = e \qquad ... (4)$$

Hence from (3) and (4), it follows that e = e' which means that the identity in a group is unique.

Second Method: From (1) and (2), we have ae = ae'. Therefore from the cancellation law e = e'.

Hence the identity in a group is unique.

Teorem

The inverse of an element in a group is unique

Proof: Let G be a group Let a be an element of G and let a^{-1} be its inverse.

We have to prove that a^{-1} is unique. If not, suppose a' is another inverse of a.

Since a^{-1} is the inverse of a, therefore

$$a\alpha^{-1} = \alpha^{-1}\alpha = e \qquad \dots (1)$$

Similarly since a' is the inverse of a, therefore

$$aa' = a'a = e \qquad \dots (2)$$

where e is the identity element of G.

Multiplying (1) by a' on the left, we get

$$a'(aa^{-1}) = a'e = a'$$
 ... (3)

Multiplying (2) by a^{-1} on the right, we get

$$(a'a)a^{-1} = ea^{-1} = a^{-1}$$
 ... (4)

But by associative law

$$a'(aa^{-1})=(a'a)a^{-1}$$

Therefore we have from (3) and (4),

$$\alpha' = \alpha^{-1}$$

Hence the inverse of an element in a group is unique.

Second Method: From (1) and (2) we have $aa' = aa^{-1}$. Therefore from the cancellation law $a' = a^{-1}$.

Hence the inverse in a group is unique.